skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lambeth, Robert"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Covalent organic frameworks (COFs) are highly modular porous crystalline polymers that are of interest for applications such as charge‐storage devices, nanofiltration membranes, and optoelectronic devices. COFs are typically synthesized as microcrystalline powders, which limits their performance in these applications, and their limited solubility precludes large‐scale processing into more useful morphologies and devices. We report a general, scalable method to exfoliate two‐dimensional imine‐linked COF powders by temporarily protonating their linkages. The resulting suspensions were cast into continuous crystalline COF films up to 10 cm in diameter, with thicknesses ranging from 50 nm to 20 μm depending on the suspension composition, concentration, and casting protocol. Furthermore, we demonstrate that the film fabrication process proceeds through a partial depolymerization/repolymerization mechanism, providing mechanically robust films that can be easily separated from their substrates. 
    more » « less